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PREFACE

* This study was conducted as part of the Independent Research Program of the
Institute for Defense Analyses, under which significant issues of general interest to the
defense research community are investigated.
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1. DESCRIPTION OF THE PROBLEM

The offensive force consists of A identical, perfect attackers which we think of as

* RVs. The defense is a two-layer defense consisting of an area defense and terminal

defense. All defensive weapons are perfect, so they destroy an incoming attacker if aimed

at it. The targets have value v(i) for i= 1,.. .,T, and we order the targets so that

v(l) 2t v(2) 2!..v(T).

The terminal defense is preallocated, with the number of interceptors at target 1

equal to v(i). The area defense can operate in two different modes - (1) without impact

-~ point prediction and (2) with iMpact point prediction. In the first case, no ipp,. the area

V defense selects B of the A incoming RVs at random and fires interceptors at those RVs to
kill them. (B is the number of area interceptors.) The RVs surviving continue to their

respective targets, where" they encounter the terminal defense. The terminal defense

engages the RVs and if any RVs penetrate, the target is destroyed. In the second case, with

* ipp, the defense can see the structure of the attack and then, with this knowledge, allocate

the area interceptors to specific RVs. For any attack, the total value destroyed will be

greater in case* (1) than in case (2), assuming that the defense employs the best strategy in

the area defense layer. The problem is to find the optimal attacks in both cases (optimal

* meaning greatest expected value destroyed) and to examine quantitatively the difference

between the two cases.

H1. A SIMPLE EXAMPLE AS A GUIDE TO UNDERSTANDING

In order to illustrate many concepts we will consider the following fairly simple

situation:

* targets of value 10, 8, 5,2, 1

I. * area defense, B=5

- number of attackers variable.

First consider the case with no ipp. Suppose the attacker has 10 weapons. His

problem is to decide how to distribute the 10 weapons so as to maximize the expected



damage, knowing that the defense does not have impact point prediction. Some points are

clear.

- If the offense elects to attack target number i then it is useless
to aim a number of RVs less than or equal to v(i). So in our
case, the offense should not attack target 1 at all, if he attacks
target 2 he should use at least 9 of his weapons, etc.

If two targets, say target i and target j are attacked, then if i < j
(so that v(i) > v(j)), then an optimal attack must have

a(i) - v(i) > a(j) - vo),
where a(k) is the number of attackers aimed at target k.

Professor Soland has written a dynamic programming algorithm to determine the
optimal targeting for the attacker. Appendix A contains a short description of his

algorithm.

Using his algorithm we find that with 10 weapons the optimal attack is

a(1)= 0

a(2) = 0

a(3) =0

a(4) = 7

a(5) = 3,

and the expected damage is 2 1/3.

I have programmed the algorithm in FORTRAN on IDA's VAX 785 and run it for

different numbers of attackers. A listing of the program and the outputs from its various

runs can be found in Appendix A. The cases treated there are of area defense equal 5, 15,

25, 35, and 45.

The results are shown in Figure 1. The solid curves show the cases B=5, 15, 25.

In each case the shape of the curve is similar, with a staircase at low attack levels and a

smoother curve sloping to the right at higher attack levels. u

Consider now the case where the area defense has impact point prediction. When

the defense has ipp, the offense's optimal attack changes. There are two basic strategies

that I have defined for the offense (1) shoot-to-kill and (2) defense dilution.
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With the first strategy, the offense chooses a list of targets to attack and then attacks

a target of value v with v+B+l RVs. This shoot-to-kill attack effectively renders the area

defense impotent to defend the target because even if the defense were to use all of his B

area interceptors to defend the target, v+1 RVs will still penetrate to the terminal defense

which consists of v interceptors -- the target is destroyed. Thus, at each attack level, the
optimal shoot-to-kill strategy consists of picking the largest aggregate target value to attack
subject to the condition of having enough RVs to attack a target of value v with v+B+ 1

RVs.

The maximum damage possible at each attack level for B=5, 15, 25, and 35 using

the shoot-to-kill strategy can be found in Appendix B.

It turns out that the shoot-to-kill strategy is optimal for the offense when either the

attack level is small and/or the number of area interceptors is small. In fact for B=5 and 15
discussed above, the shoot-to-kill strategy is optimal at all attack levels. U

However, when B=25 (so we no longer have B "small") and A=62 (so the attack
level is not "small") the shoot-to-kill strategy is not optimal. To prove it is not optimal, I

shall demonstrate a better strategy. The optimal shoot-to-kill strategy would be to attack

just the target of value 10 because no other feasible combination has a higher value

destroyed. However consider the attack
a(l) = 10+ 13 =23

a(2)= 8+13=21

a(3)= 5+13=18

a(4) = 0

a(5) = 0.

The defense, with 25 area interceptors, can save only one of the three targets attacked. To

minimize his losses, he will save the value 10 target, so the offense destroys the targets of

value 8 and 5 for a total damage of 13.

The offense has diluted the defense by attacking more targets than with the shoot-

to-kill strategy. The offense does not dictate which targets will be destroyed with certainty

but leaves that choice to the defense. What the offense can guarantee is the total damage.

4
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Further properties of the defense dilution strategy will be examined n the next

6 section.

By examining the possible attacks for the cases B=5, 15, 25 we can find the

optimal attacks, as well as the expected damage. These results are plotted on Figure 1 as
the dashed lines. Note that for a given number of area interceptors, the curve for ipp is
always to the right and below the curve for no ipp.

The quantitative comparisons we will be making between the two curves will take

the form:

To achieve a specified damage level, what percentage more RVs
must the offense expend when the defense has impact point prediction, as

compared to the case when the defense does not have ipp?

For the cases B=5, 15, 25, and v=13, 20 the results are shown in the lower right-
hand comer of Figure 1. For example, with 15 area interceptors the offense needs 54.5%
more RVs to achieve a damage level of 20 when the defense has ipp than when it doesn't.
Stated another way, if the offense can deny the defense impact point prediction (for
example by maneuvering after the area defense layer) then the offense, to achieve a damage
level of 20, can reduce his forces by approximately 1/3 (= .54/1.54).

HI. THE DEFENSE DILUTION STRATEGY

* When the defense has many interceptors, the shoot-to-kill strategy is nonoptimal
because the cost to attack a new target is high relative to its value. What is called for is a

new strategy which we name the defense dilution strategy.

Suppose that the offense attacks all of the targets in the target set, meaning that a(i)
> v(i) for all i. The area defense in his choice of which targets to defend (there is ipp) must
solve a knapsack _obler

MAX Xziv(i).
zi e {0,1}

L zi (a(i)-v(i) < B

This is generally a difficult problem to solve exactly. One heuristic solution would be to
order the "densities"

5
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v(i)
a(i)-v(i)

in increasing order, and then let

1 {i ikzi=10 i>k

where

X
k MAX s.t. (a(i)-v(i)) < B.

x il

x k
The value saved is the v(i). However, this leaves B -. (a(i)-v(i)) area interceptors

unutilized, so that we suspect this is not optimal for the defense.

In fact, it is easy to make up examples where this strategy is not optimal.
However, this strategy results in a value destroyed which is at most v(k+l) more than

optimal, so if the target values are small relative to the total value, then the percentage

difference between the two is small.

We can consider the continuous (or partitionable item) knapsack problem

MAX Zi v(i)zi C [Ol]

zi (a(i)-v(i)) < B

which has the solution

1 
i5k

k
B - (a(i) - v(i))

Zi i=lz~~i = ""-I=
a(k+1) -v(k+l) i=k+

0 i > k+2.

6
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The answer to this problem is at most v(k+l) greatr than the original knapsack
problem value. So again, if v(k+l) is small relative to the total value, the percentage

difference is small.

The offense's problem is what might be called the "knapsack game":

MIN MAX zi v(i)

_a(i)=A zie{0,1}
a(i)>v(i) zj (a(i)-v(i)) < B

4 If the inside problem were the partitionable item knapsack problem (zi e{0, 11

instead of zi ef{0, 11), which we assume is a good approximation, then the solution of the
outside problem is to take a(i) such that

v(i) = constant for each i,

a(i) - v(i)
i.e.,

a(i)- v(i) -A.-v(i)

(Note that we are letting a(i) be rational, but again this game is a good approximation to the

game where a(i) is integral.)
N" This is what might be called the Proportional Attack Theorem. When the offense

SQ uses this attack, the value of the continuous game is

VALUE B
SAVED= X v(i) A-Y v(i)

If we let V = X-v(i), then we have
C VALUE V(l- B

DESTROYED V

Note however that at low attack levels the offense will not attack all of the targets (the

above assumes that all of the targets are attacked). Let us assume that the offense will

L tattack a fraction f of the total value. Then

g(f) -VAU -Q l-~DESTROYED =

7

C,,



4,..

The offense will pick f so that this is maximized. Taking the derivative,
dg v {Af) B

df (A- -fV) 2 -AB

so that at the maximum

if = :"--I'A

If v (/

then VALUE (q- _ 2
DESTROYED

These formulas constitute the defense dilution strategy. For a more exact analysis of this
knapsack game and the defense dilution strategy, see Appendix C. The algorithm there
was never implemented - instead it was used as justification of the two formulas above for

the expected value destroyed.

8
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IV. LARGE SCALE PROBLEMS WITH ONE AREA

In the process of solving the ipp vs. no ipp on a nationwide scale, we will
encounter rather large size problems, in the number of targets, number of interceptors and
number of attackers.

number of targets is 43 - 80

* The range of , total target value is 430 - 800
number area int is 43 - 800

number attackers is 50 - 2000.

As an example of the qualitative results for large scale problems compared to the small
C example in section II, I present the following situation

5 targets of value 20

10 targets of value 10

targets "4 12 targets of value 5
Total value = 260

kNumber of area interceptors = 50,150,250.

*• The results are shown on Figure 2. As we see, the no ipp curves have become

nearly lines and the ipp curves have smoothed quite a bit, except at the lower end where the
shoot-to-kill strategy with its characteristic staircase shape is present.

The solid curves were calculated at 25 step intervals using Soland's algorithm and
C, the dashed curves were calculated as a combination of stk and dd strategies.

I cannot account for the linear shape of the no ipp curves at present. However, they
seem to be approximated by lines joining the following two points

. (B,0) and ((B+T+V) (l+a), V)

where T - number of targets and ca is some number between. 10 and •20.

9
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Perhaps there is some sort of Proportional Attack Theorem so that the distribution of RVs
arriving at the terminal defense of target i (i.e., through the area defense) would look like

9

MEAN=

V(i) a(i) (1- .) a v(i) (IF a(i) vfi))

9-24-65-1

See Appendix F for a little further explanation.

Computationally, it would be a great benefit to have some good approximation
because computing the n.ip curves is the largest computational burden. The calculation
of one of the curves for a large problem was taking __ 5 hours of CPU time.

Appendix F contains a thorough analysis of the structure of optimal attacks, which
leads to an approximation for the expected damage in the no ipp case.

V. LARGE SCALE PROBLEMS WITH MANY AREAS - NATIONWIDE
DEFENSE

We have 30 nonoverlapping areas (which we call citadels) with targets in each and

* independent area defenses in each.

The target structure of the citadels is shown on Figure 3. In a given row of the -
table, we read across the number of the citadel(s) with the particular target structure, the
number of targets of value 200,100,20,10,5 and the total target value.

The total target distribution is

5 targets of value 200

10 targets of value 100

140 targets of value 20

800 targets of value 10

1000 targets of value 5

11
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Nr

for a total of

1955 targets with total value 17,800.

I ran three different cases of the problem:

A. Area defense = 10% of target value

B. Area defense = 40% of target value

C. Area defense = 100% of target value.

In each case I computed the no ipp, and ipp, curves for each of the individual citadels
and then used dynamic programming with a step size of 50 to determine the optimal attack

against the nationwide target set.

Number of Targets of Given Value
Citdl Num n 1D 5

1-6 0 0 2 30 18 430
7-12 0 0 5 20 50 550
13-18 0 0 8 30 36 640
19-20 0 0 0 50 30 650
21-23 0 1 7 20 20 540
24-25 0 2 3 40 28 800

26 1 0 2 20 50 690
27 1 0 3 15 40 610
28 1 0 10 15 30 700
29 1 1 4 15 50 780
30 1 2 4 15 30 780

Totals: 5 10 140 800 1000

1955 Targets

17,800 Value

Figure 3. DATA SET USED IN THE MULTI-CITADEL CASE

12
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A. Area defense = 10% of value

The results are shown on the following four pages as Figure 4 and Tables 1 and 2.
There is approximately a 33% difference in the nojp2 and ipM curves. Appendix D

contains the curves comparing ngio and ipp for the individual citadels.

B. Area defense = 40% of value

The results are shown in the same format as those of the 10% case, and are

displayed as Figure 5 and Tables 3 and 4. There is approximately a 75%-85% difference

between the n j= and jpp curves. See Appendix E for further results.

C. Area defense = 100% of value

For this case, because of the lengthy computation time, I used the approximation
derived in Appendix F for the no ipp curves. There is a 125% difference between the n

ipp and j= curves. See Appendix F for the results in this case.

L
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Table 1. Area Defense = 10% of Value

Number of Attackers Percentage
Value no ipp ipp Difference Difference

* 4,450 5,900 7,900 2,000 33.9%
(1/4)

8,900 12,150 16,200 4,050 33.3%
(1/2)

* 13,350 18,450 24,750 6,300 34.1%
(3/4)

17,800 27,450
(all)

The percentage difference between the number of attackers needed with and without ipp to
obtain three different damage levels when the area defense equals 10 percent of the target

value.

O5
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Table 2. TARGET SET OF 30 CITADELS
Area Defense = 10 percent value

Attacker no ipp i.

1000 773.67 630.00
2000 1537.42 1249.74
3000 2284.42 1817.14
4000 3031.42 2351.64
5000 3777.03 2888.61

6000 4515.46 3425.91
7000 5251.23 3962.14
8000 5976.14 4498.07
9000 6684.60 5034.15

10000 7393.58 5570.92

11000 8102.04 6106.84
12000 8810.53 6642.76
13000 9516.66 7178.31
14000 10223.45 7714.23
15000 10926.22 8251.00

16000 11633.89 8785.77
17000 12336.13 9322.53
18000 13034.26 9857.24
19000 13728.13 10392.85
20000 14420.93 10928.71

21000 15118.95 11463.16
22000 15807.29 11995.89
23000 16500.12 12508.39
24000 17131.27 12986.21
25000 17534.75 13472.32

26000 17721.97 13934.17
27000 17788.48 14347.01
28000 17800.00 14686.42
29000 17800.00 14968.50
30000 17800.00 15195.92

31000 17800.00 15397.85
32000 17800.00 15565.93
33000 17800.00 15714.10
34000 17800.00 15841.92
35000 17800.00 15956.75

Continued

16
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* TABLE 2. CONCLUDED

Attackers no ipp ipp

36000 17800.00 16057.79
37000 17800.00 16148.92
38000 17800.00 16230.27
39000 17800.00 16305.14
40000 17800.00 16372.81

41000 17800.00 16433.81
42000 17800.00 16490.35

043000 17800.00 16542.21
44000 17800.00 16590.32
45000 17800.00 16634.82

46000 17800.00 16676.11
47000 17800.00 16714.71
48000 17800.00 16750.64
49000 17800.00 16784.30
50000 17800.00 16815.93

* Expected damage levels for different numbers of attackers with optimal attacks and
defenses in the cases of ipp when the area defense equals 10 percent of the target value.
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Table 3. Area Defense = 40% of Value

* Number of Attackers Percentage
Value noipp ij1 Diffrernce Difference

4,450 7,850 13,900 6,050 77.1%(1/4)

0 8,900 16,000 28,600 12,600 78.8%
(1/2)

13,350 24,400 45,000 20,600 84.4%
(3/4)

C- 17,800 35,150
(all)

The percentage difference between the number of attackers needed with
and without ipp to obtain three different damage levels when the area

* defense equals 40 percent of the target value.

1

[.
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TABLE 4. TARGET SET OF 30 CITADELS

Area Defense = 40 percent of value

AI1tkc no ipp 12
*1000 571.06 400.00

2000 1141.96 800.00
3000 1708.47 1100.25
4000 2277.82 1438.75
5000 2852.13 1740.99

6000 3414.1 2046.36
7003972 2349.46
8000 4532.07 2652.86
9000 5087.93 2956.15

%:10000 5646.87 3259.54

11000 6188.95 3562.59
12000 6744.81 3865.99
13000 7277.76 4169.06
14000 7817.72 4472.23
15000 8352.77 4775.65

16000 8885.43 5078.92
17000 9424.26 5382.190
18000 9963.09 5685.22
19000 10491.94 5988.34
20000 11026.02 6291.61

21000 11564.85 6594.88
22000 12091.34 6897.80
23000 12623.87 7201.03
24000 13154.54 7504.30
25000 13682.89 7807.57

26000 14205.98 8110.49
27000 14729.07 8413.49
28000 15252.16 8716.54

*29000 15775.25 9019.54
30000 16298.34 9322.54

31000 16821.43 9625.44
32000 17251.72 9928.51 1
33000 17251.72 1023.51
34000 17692.32 10529.98
35000 17791.93 10830.37

20



Table 4. CONCLUDED

Attackers n..i
36000 17800.00 11127.66I' 37000 17800.00 11418.10
38000 17800.00 11705.17
39000 17800.00 12002.46
40000 17800.00 12251.41

41000 17800.00 12519.97I. 42000 17800.00 12759.36
43000 17800.00 12973.59
44000 17800.00 13169.6945000 17800.00 13348.16

46000 17800.00 13511.36
C- 47000 17800.00 13662.50

48000 17800.00 13801.10
49000 17800.00 13931.17
50000 17800.00 14051.49

defenExpected damage level for different numbers of attackers with optimal attacks and
.defenses in the cases of ipp and no ipp when the area defense equals 40 percent of the

target value.
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VI. COMPUTER PROGRAM DOCUMENTATION

All of the calculations were done on the VAX 785 system at IDA with programs

written in FORTRAN.

The no ipp programs were run in a batch mode. Since I didn't (and still don't) V

know how to read data from a rile during the execution of a FORTRAN program, each
different batch job consists of the same basic program that does the work, with different

"front ends" contouring the data used in that particular job. The .for program is explained
in Appendix A. The other files are self explanatory.

In case other people would like to access my files, here is a diagram of my directory
structures:

[.PERIO] FI.PER401 [.PER1 001

In the subdirectory [.DEFENSE], the following files may be found:

DYNAM10.COM - compiles, links and runs DYNAM10.FOR

DYNAM10.FOR - uses dynamic program to integrate all 30 citadels

THE10ANSWER.DAT - output from DYNAM10.FOR attack step size is 50

THESHORT1OANSWER.DAT - shortened form of the above file - step size = 1000

DYNAM40.COM

DYNAM40.FOR same as above except now

THE40ANSWER.DAT area defense = 40% of value insteadof 10% of value
THESHORT40ANSWER.DAT

22
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In the subdirectory [.BATCH.PER 10], we find the files

RUN 10NUMB%%%.*

where % is 001, 002, 003, ..., 011 and * is .corn, .dat, .for, .Jog.

The numbers %%% refer to the data sets from the list of citadel structures (there are

11 citadel structures and 11 different file types). Also, area defense = 10 percent of value

for each citadel.

Similarly, the subdirectories [.BATCH.PER40] and [.BATCH.PER100] contain
the files

RUN4NUMB%%%.* and RUN 100NUMf .*

where for the first of those, area defense = 40 percent of value, and for the second, 100
percent of value.

23
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APPENDIX A

DESCRIPTION AND IMPLEMENTATION OF SOLAND'S ALGORITHM
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The following is a short description of a dynamic programming algorithm due to
Prof. Soland that appeared in an IDA memo dated 18 July 1985. Because we are

concerned with the case of perfect attackers and perfect defenders there are some

simplifications.

There are A attackers, B area defenders, T targets with the value of target i equal to

v(i), and at target i there are v(i) terminal interceptors.

For i=1,2,...,T and x=0,1,...,A, let

(x) )the expected target value destroyed at target
W li if x RVs are assigned to it by the attacker.

Since at target i there are v(i) perfect terminal defenders, we see that

ithe probability that more than v(i) RVs arrive at the
Wi (x)= v(i) • "terminal defense of target i, given that x RVs were

1 aimed at it. J
An elementary "ball and urn" argument shows that the distribution of the RVs through the

area defense at each target is hypergeometric, so

x. (A-B) ( B)

Wj (x) = v(i) I -(x)
To find the optimal attack we first calculate Wi (x) for i= 1,2,...,T and x=O,1,...,A,

and then apply a dynamic programming algorithm. In particular, let

U
s(ur)= MAX Wi (zi)

u i=1
Izi=r

i=1

zi a non-negative integer

for u=1,2,...,T and R=0,1,...,A. We can calculate these s(u,r)'s recursively by letting

s(lr) = W1 (r)

for r=O,l,...,A, and then

A-1
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s(ur)= MAX fWU (z) + s(u-1l,r-zl

z=O, 1,. ,r

for u=2,3,...,T and r=O,1,...,A.

The answer we are seeking is then just s(T,A).

This algorithm is implemented in the FORTRAN program reproduced as Figure A-

1. It is the basic program used to calculate all of the curves in the later appendices when the

area defense does not have impact point prediction.

0
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C DECLARING THE VARIABLES
REAL WgARCO:100,O:500C)
REAL SUM(O:100,O:5

0 00 )
REAL VC0:100)
REAL SCC:500O)
REAL I,JpLXoV,INITB,NoT
REAL AoCPDCjPKA REA,FOOON, Zi

OPEN (UNIT=1O, FILEz6RUNlONUM3OO1.DATfp STATUS'NEW')

*INITz5C a

N=5OCC
STEP=5C
T=50
DO 2 1=1,2

VCI)=20

2 CONTINUE
D0 3 1=3.32

3 CONTINUE
DO 4 1233*50

VCI)z5
4CONTINUE

PMAXV=V C)
V(O)ZV(I)+s

WRITE (1O.*)'THERE ARE',8v'AREA INTERCEPTORS WITH PK =I,PKAREA

WRITE C1O,*)ITHE TARGET VALUES ARE'

WRITE (10,k) (Vt!)'f I=1,1)
WRITE (10,')g

'DO 1 11;,T

1 CONTINUE VLEVLEVI

DO 100C AzINIT,NrSTEP
ANSW=O

C THE CALCULATION OF WBAR(I,J) FOR PERFECT AREA INTERCEPTORS

C (THIERE ARE SHORTCUTS IN THIS CASE AS COMPARED TO THE

C GENERAL CASE.)
DO *42 E0O,V(O)

Di0 41 J=O,A
sUMCE.J)zo.O

41 CONTINUE
42 CONTINUE

IL DO 90 11I,T
X=V(I)
TsVC I-1)
IF(Y-X.LE.10**(-3) )THEN

GOTO 90
ENDIF
00 60 J=X+I.X+g

DO 55 ZzX+1,MINCJ,Y)
IFCA9B-.5.LT.Z)GOTO 55
IF(8-.5.LT.J-Z)GOTO 55
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04 A 2: LA INN UNC AS.~ -o~ At CM .?: 1 -l UN JN U F OR I

-DRA2: EMFINN.UACLASS.ATCH.PEROAUN1ONUM8OOl.FoR1I
CDRA2:CMFINN.UNCLASS.BATCH.PER10)RUN1NUMOO1.FOR:1

IFCA-.5.LT.J)GOTO 55
SUNCXJ)=SUNCXJ)+EXP(LBIN(A-r,ZiLBINC9J-Z)-LBIN4(AJ ))

55 CONTINUE
SUM(X.J)ZSUM9CK.J) *SUM(Y,J)
IF(SUM(X.J).GE.J. 999)GOTO 80

6C CONTINUE
0O 70 J=X+1+t,A

SUMX.J) = 1
7c CONTINUE

GOTO 9C
ac DO 85 G=J,A

SUM(X,G):l
is CONTINUE
90 CONTINUE

DO 92 11.,T
DO 91 J=0,A

W8ARCI,J):VcI)*SUM(VCI),J)
91 CONTINUE
92 CONTINUE

C DYNAMIC PROGRAMMING ALGORITHM TO FIND THE OPTIMAL ATTACK
D0 120 R=OPA+.5

SC(R ) =WAR (C1,R)
120 CONTINUE0

DO 150 Uz2pT-1+.S
DO 140 R=O,A+.5

S. DO 130 Zz=OA-R+.5
S(A-R)=qAX(S(A-R),WBIARCU,Z)4S(A-R-Z))

130 CONT INUE
140 CON4TINUE
150 CONT1Nur

DO 160 Z=OA+.5
ANS WzMAXCA NS Wi WARC T.Z) SA-Z) )

160 CONTINUE

C WRITN6 THE OUTPUT--EXPECTED DAMAGE BY AN OPTI1MAL ATTACK0

WRITE CUNITzl0., FMT02000) A, ANSW,CSQRTCA)-SQRT(B+1))a*2
2000 FORMATCFIZ.0, 2 F12.2)

IF(ANSW.GE.VALUE*.98)GOTO 9999
l COO CONTINUE

~99END 48

C THIS FUNCTION CALCULATES THE LOGARITHM OF 8INOMIAL
C COEFFICIENTS BY USING STIRLING'S APPROXIMATION
C TO FACTORIALS

REAL FUNCTION LSINCX#Y)0
IF(X.LT.O.5)THEN

-A-



-D A : M %. UNC A Y . :1 AT C4P4 1 ~ i ' RUN lUU - -k 1

DqA2:t[P INN.UNCLASS.aATCH.PER1OJRUNIONUM2OO1 .FOR;I

L3IN=0.0
ELSE IF (Y.LT.3.5)THEN

L-1N=0.0
ELSE IF (X-Y.LT.O. 5)TWEN

ELSE

*LBINkLOG(SORT(2*3.1415' 
2 6*))XbLOG(X)-X(l/ (12*X))

LJIN=L31NCLOG(SQRTC2*3.1415926hY))+Y*LOG(V)-Y+(/(12*Y)))
LBIN=L31N-(LOG(S2RT(2*3.1 415926*C(X-Y) )))
LBINL-N((XY)*LOG(X-Y)(XY)(I(12*(XY))))

END IF
RETURN

* END
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The following presentations, Table A-1, are from the FORTRAN program in the case

where the target values are 10,8,5,2,1. This particular case is the one discussed in Section
II in the body of the paper.

TABLE A-I

Expected Value Destroyed by an optimal attack when the area defense is 5 inter-
ceptors without ipp.

Area Defense=5

Number of Attacke" Expreted Vaile Destroyed

16 10.00
17 10.00
18 10.51
19 10.85
20 11.50
21 11.8722 12.27
23 13.07
24 14.07
25 14.80
26 15.02
27 16.81
28 17.59
29 17.91
30 18.41
31 19.12
32 19.59
33 20.33
34 21.5135 22.27
36 22.60
37 23.18
38 23.85
39 24.36
40 24.79
41 25.22
42 25.46
43 25.66
44 25.80 0
45 25-91

Continued

A-6
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TABLE A-i
Expected Value Destroyed by an optimal attack when the area defense is 15 inter-

ceptors without ipp.

Area Defense = 15

Number of Attackers Expected Value Destroyed

26 10.00
27 10.00

* 28 10.21
29 10.47
30 10.79
31 11.30
32 11.65
33 12.03
34 13.08
35 13.91
36 14.46
37 15.14
38 16.38
39 17.11

* 40 17.57
41 17.84
42 18.44
43 18.98
44 19.61
45 20.62

* 46 21.35
47 21.93
48 22.31
49 22.81
50 23.38
51 23.87
52 24.17
53 24.60
54 24.99
55 25.23
56 25.42
57 25.58

L 58 25.70
59 25.80
60 25.86

Continued

A-7

S e



II

TABLE A-i

Expected Value Destroyed by an optimal attack when the area defense is 25 inter-
ceptors without ipp.

Area Defense = 25

Number of Attackers Expected Value Destroyed

36 10.00
37 10.00
38 10.11
39 10.33 lJ
40 10.59
41 11.09
42 11.47
43 11.71
44 12.69
45 13.55
46 14.13
47 14.63
48 15.77
49 16.65
50 17.21
51 17.56
52 17.91
53 18.49
54 18.93
55 19.83
56 20.64
57 21.32
58 21.80
59 22.16
60 22.68
61 23.21
62 23.62

Continued

I

A-8

' . .. . . . . . . . . .. . . . . . . . . . . . ., . , - -. . -.- . . .-. . -- . * . . " . 2 - - --



TABLE A-i

Number of Attackers Expected Value Destroyed

63 23.95
64 24.39
65 24.70
66 24.98
67 25.20
68 25.39
69 25.53
70 25.65
71 25.74
72 25.81
73 25.85
74 25.89
75 

25.92 C ni
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TABLE A-I

Expected Value Destroyed by an optimal attack when the area defense is 35 inter-
ceptors without ipp.

Area Defense = 35

Number of Attackers Expected Value Destroyed

46 10.00
47 10.00
48 10.07
49 10.27
50 10.52
51 10.98
52 11.37
53 11.63
54 12.49
55 13.34
56 13.95
57 14.37
58 15.50
59 16.35
60 16.98
61 17.39
62 17.65
63 18.19
64 18.67
65 19.39
66 20.23
67 20.89
68 21.44
69. 21.88
70 22.23
71 22.78

Continued

A-10
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TABLE A-i

Number of Attackers Exspected Value Destrye~d

*72 23.25
73 23.63
74 23.98
75 24.35
76 24.65
77 24.91

*78 25.14
79 25.33

*80 25.46
81 25.58
82 25.67
83 25.75
84 25.81
85 25.85
86 25.89
87 25.92
88 25.94
89 25.95

Continued
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TABLE A-i Concluded

Expected Value Destroyed by an optimal attack when the area defense is 45 inter-
ceptors without ipp.

Area Defense = 45

Number of Attackers Expected Value Destroyed

56 10.00
57 10.00
58 10.05
59 10.25
60 10.48

*61 10.92
62 11.30
63 11.57
64 12.36
65 13.19
66 13.82
67 14.26
68 15.29
69 16.18
70 16.82
71 17.26
72 17.56
73 17.99
74 18.49
75 19.09
76 19.93
77 20.64
78 21.21
79 21.66
-80 22.02

a''
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TABLE A-i Concluded

Number of Attackers Expected Value Destroyed

4081 22.50
82 22.97
83 23.39
84 23.72
85 24.08
86 24.41
87 24.69
88 24.93
89 25.15
90 25.31
91 25.41
92 25.57

Ir 93 25.66
94 25.73
95 25.79
96 25.84
97 25.87
98 25.90
99 25.93
100 25.94

L
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APPENDIX B

THE SHOOT-TO-KILL STRATEGY
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I have considered the following situations as in Section I:
* target values 10, 8, 5, 2, 1
* terminal defense of 10, 8, 5, 2, 1
* ea defense of 5 with impact point prediction

* * attack level variable

* perfect interceptors and perfect weapons.

The problem is to determine the optimal attack, i.e., the one that has the highest
expected damage. R.M. Soland has written an algorithm to solve this problem. There is
however a simple procedure to produce a non-trivial lower bound for the expected damage.

The procedure relies upon the "shoot-to-kill" as "guaranteed damage" strategy.
With five area interceptors available to the defense, the offense can guarantee damaging the

C-. first target with 10 + 5 + 1 = 16 attackers directed at it. Similarly, the second target will be
damaged by 14 attackers, the third by 11, the fourtd by 8, and the fifth by 7. The "shoot-
to-kilH" strategy is the one where the offense picks the targets it wishes to and can destroy
with its available attackers and then applies the number of attackers to those targets in order
to guarantee killing them. Thus the problem reduces to simply determining the wisest
choice of targets to attack.

For example, with 20 attackers the offense can damage the following combinations
of targets: any of the individual targets; targets 4 and 5; targets 3 and 5; targets 3 and 4.

* For these possibilities, the expected damages are 1, 2, 5, 8, 10, 3, 6, 7. So, we see that
the best attack is to overwhelm target 1, for an expected damage of 10.

Carrying out this procedure for a range of attackers we find the following:

L
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SHOOT-TO-KILL

VALUE D--5 B=15 B=25 B=35

0 0-6 0-16 0-26 0-36
1 7 17 27 37
2 8-10 18-20 28-30 38-40

5 11-13 21-23 31-33 41-43
8 14-15 24-25 34-35 44-45

10 16-22 26-42 36-62 46-82

11 23 43 63 83
12 24 44 64 84
13 25-26 45-46 65-66 85-86

15 27-29 47-49 67-69 87-89
18 30-36 50-66 70-96 90-126
19 37 67 97 127

20 38-40 68-70 98-100 128-130
23 41-47 71-87 101-127 131-167
24 48 88 128 168

25 49-55 89-105 129-155 169-205
26 56+ 106+ 156+ 206+

Number of attackers required to obtain a specific damage
level using the shoot-to-kill strategy in the cases where the
area defense has ipp and consists of 5,15,25,35 interceptors.
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A TWO LAYER ONE AREA DEFENSE WITH IMPACT POINT
PREDICTION

PERFECT ATTACKERS AND PERFECT DEFENDERS

A. Algorithm for the Knapsack Game When There Are Many Objects of
Equal Value
We shall first consider the case where all of the targets are of equal value.

There are t targets each of value V. There is a terminal defense of V perfect

interceptors at each target and an area defense of B perfect interceptors. The area defense

has impact point prediction, which means that the area defense can be allocated after the

tC- defense observes the attack.

The problem we will solve is to determine the minimum number of RVs the attacker

needs in order to guarantee destroying r targets, where r varies between one and t.

* Mathematically, the problem is to determine the least A such that

MAX MIN Xf(a(i), d(i)) -_ r.
a a(i) < A d(i) < B
a) EN di)E N

• where

f(a(i),d(i)) if V+d(i) > a(i)
L0 if V+d(i) < a(i)

andC'

N = {,1,2,...}.
It is easy to see that for any value of A, among the set of optimal attacks will be one having

for each i

I either a(i) > V or a(i) = 0.

Hence, we may restrict our attention to such attacks. Suppose then that the attacker attacks

n targets, where r < n < t. If the attacker is to guarantee destroyihg r targets, then he cannot

allow the defense to save (n-r)+1 targets. Thus,

C-1



(*) (a(i,,)-v) -B+1 0

for any n-r+1 distinct subscripts {ia1.

If we add the (n r+ 1) different inequalities above, we find that O

T a_(i)v n (B+1).-v) -

Let us renumber the targets so that •

a(i) < a(j)

fori <j .

From inequality (*) we have O

(a(l)-v) + (a(2)-v) + + (a(n-r+l)-v) > B+1.

By the pigeonhole principle

(a(n-r+ l)-v) - r+

Thus,
a(i) - v >- F nB_+l 9 for i > n-r+ 1.

In order to minimize the required number of attackers, we should have

n-r+l
(a(i)-v) = B+1

i--1

with S

a(i) - v:5 j I+- for i=l, ... , n-r+1

" and

a(i)= [i]-r l for i = n-r+2, n.

We find the total number of attackers to be

C-2
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Attackers = nV + (B+1) + (r-1) {n-7]

To get the final answer, we minimize this function over n e {r,r+l ...1, t}.

It would be convenient to have an analytic approximation to the minimum number
of attackers so as to perform analyses, draw graphs, etc. Therefore, such an

approximation will be derived.
First we consider the continuous game - where a(i) and d(i) are non-negative real

numbers. We can use an argument similar to the one above to find that the optimal attack is

equally distributed:

a(i) B+l + V fori=1,2,...,n
and so 

-7

Attackers = n (B-l +)

(n1) (n-r:1)
(B+1f=nV+ (B+I) + (r-) k, :n-]" 1

We now further relax the constraint of n being integral. Thus, the offense is free to choose

the exact value of targets to be attacked. For V small and t large this is probably a valid
assumption.

In any event, we shall use the following combination of notations:

Aint refers to the problem where a(i), d(i) s N

Acont refers to the continuous problem

A refers to the problem where n e N.

Thus, Aint would be the answer to the original problem, while Acont is the most tractable

analytically.

To find Acont, we rewrite the number of attackers as
Attackers = (r-l)V + (B+1) + (n-r+l)V + (r-1) B+ _f

n-r+l fn)

The first two terms are constant, so we don't need to consider them. To minimize
the latter terms, we use the Arithmetic Mean-Geometric Mean inequality which says that the

C-3

C J



sum of two positive numbers whose product is a constant is minimized when the numbers
are equal, which implies

(n*-r+l)V = 1
n*-r+ 1

or,

n*-r+1 = 4(r-1) (B+1)/V

So,

Acont =(r-1)V + (B+I) + 2 4(r-1)(B+I)V

2

unless of course

n*-r+l = 4 (r-1) (B+1)/V > t-r+1

in which case the minimum occurs at n=t, so

Acot tv+ (B+1).

+t-r+ I

In order to find Acont, we know that n* is at most 1/2 away from the nearest

integer. And we know that fV(u) is decreasing, so

Acont 5 max (f(n*+1/2),f(n*-l/2)) f(n*-l/2).

Substituting this in, we see that

Acont < Acont + (f(n*-1/2)-Acont)

1/4 VAt+ -i'S

(r-1) (B+1) 1/2
V

At + v
cont 4(n*-r+1/2) •

If n* > t, then

Acont -Acont

C-4
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Finally, to get a bound on Aint, we see that for all n,

'B+ 1 ' V+ I" (.B+1I"
(r-l k\n-~/ < rlV-f' [-< ( -l)n-1 r-)

Therefore, we have

Acont < Acont < Acont + (r-l).

Combining all three inequalities, we get
Vq

A cont < Acont <'int < Acont + (r-l) -Acont+ (r-l) + 4(n*-r-1)

and if n' - t,

A cot=A A. A + (r- 1) =A + (r-1).cont cont int Cont int

It is possible to derive a lower bound for Aint by considering Aint.

The number of attackers for the integral solution is

" rP+1-1
Attackers = (r-1)V + (B+I) + (n-r+l)V + (r-1)lFr1

which we wish to minimize for n e [r,t].

Letting 13 - n-r+l, so that 13 e [1,t-r+1], the number of attackers can be rewritten

as

• Attackers = (r-1)V + (B+1) + 13V + (r-1)[B . -

The graph of this function is a series of line segments of slope V, with end points at

13.. B+ andf3 = B+

" 1 i-5
i--

lC,

-'''2 -. """:.,..' .. -. "2''' .... i"2....
-
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which looks something like

0+1 0+1 0+1 B+1
4 3 2

10-8-65-1
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The minima will obviously occur at where i is the largest integer such that

S(V - >) (r-l)
[., i.e.,

*" unless > t-r+1I, in which case

(B+ll

i* = Ii"

In either case,

A int = (i*+V) (r-1 +B i.

which is another lower bound for Aint*

B. Algorithm for the Knapsack Game When There Are Many Objects of

Unequal Value

,,0 Using the insight gained from section A, we can now outline an algorithm for the

case of unequal target values.

Suppose the targets are valued v(i) with

v(1) > v(2) ... v(T).
One way to solve the problem is to postulate an attack level A and then enumerate all of the

attack vectors

a= [a(1), a(2), ... ,a(T)]

with

0 a(i) _< A

and

C-7
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-p

Xa(i) = A.

For each one of these attack vectors, the defense has a knapsack problem to solve, i.e.,

MAX zivi

such that Xzifi(a(i)) < B

zie{0,1} I

where

fi(x) = max(x-v(i),O).

The number of attack vectors to be examined (and hence knapsack problems to be

solved) is on the order of AT-1, which is beyond feasibility when considering attacks on

large target sets.

In the case of perfect attackers and interceptors, it is simple to prove that optimal
attacks are monotone in their excesses on targets attacked. In other words, if i<j (so v(i) _.

v(j)) and a(i) = 0 a(j) = 0, then

a(i) - v(i) >- a(j) - vo).

Using this we can diminish the number of attack vectors considered by roughly a factor of

T!, so the number of knapsack problems to be solved is still on the order of A(T- 1).

Sabbagh's implicit enumeration algorithm does not fare any better because the

4"jumps" in the implicit enumeration scheme are not sufficiently large to significantly

decrease the number of attack vectors considered.

The algorithm outlined below attempts to circumvent the computational size of the

above algorithms in the case where there are many targets of the same value by means
similar to the ones employed in part A. The algorithm must solve at most

G
11 (n(i) + 1)

i=1

linear integer programming problems, where n(i) is the number of targets of value v(i) and

G is the number of distinct target values.

C-8
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In order to make the discussion as concrete as possible, we will consider the

• following problem:

6 targets of value 4

4 targets of value 7

Required damage level = 25

Area defense = B

We wish to determine the minimum number of attackers needed to obtain a value destroyed

* of 25.

Figure C-1 shows the set up for the algorithm. Along the x-axis is the number of

targets of value 7 and along the y-axis is the number of targets of value 4. The boundary

line for u=25 satisfies the equation

x1
T517+ ;1VF =

Points to its left represents target combinations that sum to less than 25 value and points to

its right more than 25. The 19 integer points on the line or to its right represent feasible
0 attack points. We shall examine the one circled, which represents the attacker attacking

three targets of value 7 and 4 targets of value 4. Let xi(i=1,2,3) be the excesses of the

attacks against the targets of value 7 and yj(j=l,...,4) be the excesses of the attacks against

the targets of value 4.

The shaded region is the "defense wins" region, which means that if the defender

can save a combination of targets to get within the region, then the postulated attack does
not produce a destruction of 25. For example, if the defense can save 3 targets of value 4

under attack and 2 targets of value 7 under attack, then the offense destroyed only 1 target
of value 4 and 1 of value 7, hence a total of 11, which is less than 25.

Hence, points in the region represent constraints on the xi's and yj's.

The minimal points represent the smallest set of irredundant constraints. They are

defined as the minimal set of points generating the whole "defense wins" region, where the
point (a,p) "generates" the rectangular set of points (x,y) satisfying (x,y) E [0,(X] x [0,P].

The uppermost minimal point represents the constraint that the defense cannot be

allowed to save any two of the targets of value 7. Hence

C-9
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Figure C-1. Geometric Structures in the Knapsack Game Algorithm
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0

XI + X2 >t (B+I)

x1 + x 2 > (B+1)

X2 + x3 > (B+1).

The middle minimal point represents the constraint that the defense cannot be
allowed to save 1 target of value 7 and 2 targets of. value 4. Hence

2(B+l)xa + Y031 + Y[02 > (+I

for a e{ 1,2,3} and 031,32 distinct elements of { 1,2,3,4]

The final set of constraints is that the defense cannot be allowed to save all 4 targets

of value 4. Thus,

Yl + Y2 + Y3 + Y4 2t (B+1).

What we need to do now is minimize the total attack,

3 x 7 + x1 + x2+ x3 + 4.x4 + Yi + Y2 +Y3 + Y4

subject to these constraints.

By summing the first constraints, dividing by 2 and adding the last constraint we

find

X1 + x2 + x3+ y I+ y2 + y3 + y4 > (B+1)

* with equality if

xj= 1/2(B+1), yi = 1/4(B+ 1).

All of the middle constraints are satisfied with these values of xi and yj so we have

found a (potentially non integral) optimal attack. If B=3 (mod 4) then the attack is integral.

If not, we can get good bounds on the number of attackers required by decreasing B by i

and increasing B by 4-i where B=i (mod 4), iF{ 1,2,3}.

Then we vary the feasible attack point (circled point) to one of the 18 other feasible

points. At each point we solve the problem and take the minimum of all the answers to get

the final result.

This algorithm generalizes immediately to more than 2 distinct target values.

c-11
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C. Remarks and Simplications of the Algorithm

1. Suppose the feasible attack point under consideration is (cc,P3) and we are interested
in the constraint due to the point (a-a, [-b). Then we know that

Exi + Xyo> (B+I)

where

{i.1} is any collection of a distinct indices in { 1,2, ... a } and {JG} is an distinct collection

of b indices in { 1,2, ... , f}. If we add up all of the possible combinations, we find that

so that

& xi+ j 2Y ! > (B+1).

If we now let a,b,4 assume continuous values, we can get an analytical lower bound.

Suppose we take a and b so that

and

(c-a) x 7 + (P-b) x 4= 25 -
= small constant.

ndb= [3c1-i-

In the limit,a= 7+4 3/ a -- a-n-d b

Then the constraint becomes

* 25
25 4- ) (Zxi+ .yj) > (B+l)

C-12

p



* which implies Xxi + Xyj> B+125
1-7a + 4

Thus

Att > B+I + 7a + 43.1-2

If we minimize this with respect to a,3, we find it's a minimum when

7a + 43= 25 25 (B+1)
which implies that

Att_ B+l + 25 + 425(B+l)

1- 25
"t-25 + 425 (B+I1)

unless 25 + 4125(B+1) >- TOTAL VALUE = 4 x 7 + 6 x 4= 52,

in which case we would take

7 a + 4 3=TOTAL VAL,

so that

Att 2! B+l + TOT VALS1+ 25
TOT VAL

- TOTVAL1 + TOTVAL- 25}.

=52 1 + - I

2. The algorithm can be simplified somewhat if the exact integral answer is not desired

but just a tight bound on it.

C1
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Suppose there are N distinct target values.

We shall keep the same terminology as in the case of two target groups, except we

work in n-dismensional space where the boundary line becomes a boundary hyperplane.
Suppose we are investigating the feasible attack point (LIja2,oc3,...,an) and are

concerned with the constraints due to the vector (bl,b2 ,...,bn). As above, if we add all of

the possible inequalities, we find
N b

Let C be the convex hull of the lattice points in the "defense wins" region. Let

where

= sup IX: X.EC1
Write p as

n I

j=1

' where' a lattice point in the defense wins region
i 0 : wj :5 1, Fwj -

i.e., find p's barycentric coordinates.

Since each of the bj's is a constraint vector, we have for all j

N

a1 i xi,k -

If we multiply the jth equation by wj and add, we find

-C-14
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0N

Ni .Yjji ~ B+I

which can be rewritten

i=i- 1 xik B

Thus
G1- X) xi,k -B+1

*and lx i,k B

Let

Zi-bl,l z2-bl,2.. nbn

a2 ,1-bi'l b2,2-b, 2 ... b2,n-b l,n

-D+Alz1 + ..+AnZn=det 0 =

400

bn, I-a 1,1 b n,2ai12 ~b nnbi

be the equation of the hyperplane through the points b... bn.

If we let

C Xxi,k =B+1

K (AIa1.l,.. +Aiai+... +Anan)- D

then all of the constraints will be satisfied, and we will have equality in the constraint for

',,'F~Y~i' ,so we have obtained the minimumn.

However,
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-uz-F V - J W- .W-jWw. V -V i j - -Z . Y k:- 77. *v* *.

0j.0

Xi,k =:L (]3+1)
Si

where ti,sicZ.

This is the rational solution.

The integral solution must have Xi,kEZ. We can obtain an upper bound on the

number of attackers by letting

xi,1 =

xl, 2 =

xi,3
*,°'ItiI

" = (fB+I

xi,r

+

Xi,r+ 1=
0

= r =b (B+11

,.. xi,a±i

[ki (B+I - Fai-bi) -i (B+I)where r (((.i-bi 
)  (B 1 •)(+

.
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Then the total number of attackers assigned to the ith target group is

Att. = aV. + ((ib)t B+1) + bi [~(B+1)1
Thus we have the bound

a Vd+d -:L(B+1) :_ Atti_ < iv±+ Fi-bit (B+1)

+ bi - (B+)+
Si

-< ativi +(a i-b i) I-T (B+I) + 1

S+ bi I (B+I) + bi

ti

-ivi + ci t(B+I1) + (bi +1)Si

* 

r

C
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* APPENDIX D

RESULTS WHEN AREA DEFENSE EQUALS 10 PERCENT OF TARGET
VALUE

0
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The twelve charts contained in this appendix demonstrate the difference between ipp

and no ipp for each of the thirty citadels when the area defense equals ten percent of the

target value. On each chart, the solid line represents no ipp and the dashed line represents

ipp. The citadels covered by a specific chart are noted at the top of the chart.
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The eleven charts contained in this appendix demonstrate the difference between ipp

and no ipp for each of the thirty citadels when the area defense equals forty percent of the

target value. On each chart, the solid line represents no ipp and the dashed line represents
ipp. The citadels covered by a specific chart are noted at the top of the chart.
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The large scale problems considered in this paper in the case of no ipp and area

defense = 100% of value presented large computational burdens. To simplify the
computations, I derived some approximations which may be applied with benefit.

In order to imvestigate the optimal attacks, I supplemented the FORTRAN program
implementing Soland's algorithm (discussed in Appendix A) by the introduction of the

variables

attop (ir) = number of attackers used against target i in an optimal attack when
the offense is attacking the first i targets with a total of r RVs,

and

numb (i) = number of attackers used against target i in an optimal attack against
the whole target.

The values of attop (ir) are obtained readily as a byproduct of the dynamic programming

d algorithm, while the values of numb (i) can be easily obtained from the formulas

numb (T) = attop (T, a)

and

T
numb (i) = attop (i, a- -numb (j))

j=itl
for i T-1, T-2,...,1.

After examining many cases of the optimal attacks, I decided upon two guidelines
to aid in the approximations:

-. 1. If the attacker attacks two targets of the same value in his optimal attack, then
he attacks them with equal numbers of weapons.

2. When possible, the attacker attacks more valuable targets rather than less
valuable targets.

XNeedless to say, these two guidelines held true in the many cases I examined.

At this point, I assumed that the targets were equal valued and numerous enough
that the attacker is not limited in his choice of targets. The arrival probability through the
area defense is hypergeometric:

F-1
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Prb n M~ arrive,

Prob., given that x were - (a)
fired at the target

where a = number of attackers and b = number of area defenders. I approximate this

hypergeometric distribution by a binomial distribution:

n RVs arrive, e

Prob given that x were a, ro. (n) p-nq n,

ired at the target

where p = b/a and q = I- b/a.

Now I formulate the optimal attack problem as

MAX " E x) (l-b/a)n (b/a)x-n

x _ {v+l,v+2,...} n = r+1

The second term in the product is the Incomplete Beta Function for which I found
the following approximation:

a+ -1 b-1 n (l-x)a+b- l -nIx (a,b) = I_ (an )x n ,

n =a

P(Y) + C,

where

(SI <5xlO-3 ifa+b>6and(a+b-1)(1-x) <.8 -

and
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3 [wl(1- )-w2 ( - a)]
w,2 w2 )1/2

w1 = (bx) 1/3

w2 = (a (1 - x))

P(y) - f e 1/2t dt
-- 00

Furthermore, P(y) has the following rational approximation:

P(y) = 1 - 1/2 (1 + aly + a2y2 + a3y3 + a4y4)- 4 + e

where

lei < 2.5 x 10-4

and

a1 = .196854
a2 = .115194
a3 = .000344
a4 = .019527 .

If these two approximations are used on Iq (v + 1, x - v), then we can numerically

maximize the product

a'Iq (v + 1, x -v)

for x greater than v, assuming the values of v and b/a to be given.

The results are plotted in Figure F-I which shows 13 vs. b/a for different values of
v. The quantity 13 is defined by

13 = 100" ° p tim a l RVs/target )(v/q)
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Figure F-2 shows the probability ef kill in the optimal attack. Together these two

charts are the basis of finding the approximate optimal attack. As an example, consider

citadel 29 and 1400 attackers. Using Figure F-i, we find that

Value pu_ inal Number of Attackers E-k

200 503 .9786

100 260 .9685

20 58 .9213

5 17 .8286.

With 1400 weapons, the attacker will use 503 against the 200 value target, 260

against the 100 value, 58 against each of the 4 targets of value 20 and 31 against 13 targets
of value 10. Two RVs will be left over. Summing up the expected damages at each target,

- we find that the total expected damage is 481.10.

This method was followed to generate the ngj= curves for each of the individual

citadels. The j= curves were generated as before with a combination of shoot-tO-kill and

defense dilution strategies. The individual citadels were then integrated into a nationwide

system by using dynamic programming.

Table F-1 summarizes the differences of RVs required with no impact point
prediction and with impact point prediction in selected cases. Table F-2 gives numerical

details, and Figure F-3 displays the aggregate information. The remaining figures display

resuits for citadels in the-same format as in Appendix D and E for the 10 percent and 40
percent cases.

Table F-i. AREA DEFENSE = 100% OF VALUE

Number of Attackers
--.- Percentage

YA- u N i22 Difference Difference
4,450 11,100 24,805 13,750 123.87%

.(1/4) - 8,900 22,600 50,800 28,200 124.78%
(1/2)

13,350 34,250 84,950 50,700 148.03%
(3/4)

17,800 47,050
*' (All)
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Table F-2. TARGET SET OF 30 CITADELS
Area Defense = 100 percent of value

Attack no ipp

1000 372 200
2000 784 400
3000 1214 604.5122
4000 1591 817.4713
5000 2042 1017.471

6000 2425 1217.471
7000 2836 1393.939
8000 3230 1566.130
9000 3622 1737.484
10000 4023 1909.048

11000 4412 2080.798
12000 4813 2252.357

c 13000 5202 2424.009
14000 5586 2595.466
15000 5992 2868.117

16000 6377 2938.561
17000 6756 3110.201
18000 7151 3281.761
19000 7534 3453.333

20000 7917 3624.869

21000 8299 3796.405
* 22000 8681 3967.983

23000 9064 4139.537
24000 9447 4311.188
25000 9830 4482.627

26000 10213 4654.273
C. 27000 10595 4825.741

28000 10978 4997.365
29000 11361 5168.940
30000 11741 5340.476
31000 12124 5512.001

t.. 32000 12507 5683.561
33000 12890 5855.146
34000 13273 6026.652
35000 13645 6198.212
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Table F-2 (Continued) 4

36000 14028 6369.749
37000 14411 6541.273
38000 14781 6712.849
39000 15150 6884.418
40000 15536 7055.943
41000 15913 7227.484
42000 16280 7399.020
43000 16658 7570.545
44000 17041 7742.121
45000 17349 7913.646

46000 17600 8058.171
47000 17795 8256.610
48000 17800 8428.137
49000 17800 8599.755
50000 17800 8771.280

51000 17800 8942.657
52000 17800 9114.442
53000 17800 9285.490
54000 17800 9455.623
55000 17800 9623.533

56000 17800 9790.361
57000 17800 9947.421
58000 17800 10109.54
59000 17800 10268.95
60000 17800 10426.43

61000 17800 10587.74
62000 17800 10740.23
63000 17800 10897.48
64000 17800 11050.45
65000 17800 11207.02

66000 17800 11356.84
67000 17800 11503.34
68000 17800 11649.84
69000 17800 11791.78
70000 17800 11926.73

Continued

0
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Table F-2 (Continued)

Attakngj
71000 17800 12055.48

* 72000 17800 12177.28
73000 17800 12293.63
74000 17800 12404.39
75000 17800 12510.41

76000 17800 12611.87
* 77000 17800 12708.53

78000 17800 12801.39
79000 17800 12890.34
80000 17800 12975.64

81000 17800 13057.68c82000 17800 13136.09
83000 17800 13212.00
84000 17800 13284.88
85000 17800 13355.02

86000 17800 13422.77
*0 87000 17800 13488.64

88000 17800 13554.51
89000 17800 13620.38
90000 17800 13684.86

91000 17800 13747.02
* 92000 17800 13807.03

93000 17800 13864.74
94000 17800 13920.50
95000. 17800 13974.53

96000 17800 14026.69
c 97000 17800 14077.42

98000 17800 14126.52
99000 17800 14174.13

100000 17800 14220.42
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Figure F-3. Difference between ipp and no ipp for a representative
nationwide target set when the area defense is equal to

*100 percent of the target value.
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